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1. INTRODUCTION AND SUMMARY

In this paper we deal with Lerch's transcendental function (cf. [6; 8,
p. 33]) which can be defined by its power series

co

Id(z):= L (n+A)" zn,
n~O

K, AEC, (1)

for Izi < 1; by analytic continuation it is seen to be holomorphic in the cut
plane

C* := {z E CI if Re z~ I, then 1m z ¥ 0 }. (2)

Lerch's function plays an important role in various branches of pure and
applied mathematics. For instance, it occurs in analytic number theory
[6], summability [13, Chap. IV, 3], numerical analysis (e.g., [17]), and in
the theory of structure of polymers [20]. In summability theory
equivalence problems for Cesaro and certain discontinuous Riesz means
req'uire the number and the location of the zeros of IK, 0 in C* when K is
real. In approximation theory the convergence of cardinal Lagrange spline
series with shifted interpolation grid A+ U'-, AE [0, !], is closely related to
some zeros of Im.,t, where mEN denotes the degree of the underlying
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Lagrange spline. In this case fm,,, is connected with the Euler-Frobenius
polynomial, say Pm, ,,(z), by the relation

(3)

cf. [10; 11; 14, p.7, Problem 46 if A= 0; 15-18]. In the sequel we suppose
throughout that K > 0 and AE [0, 1).

It is known [4, 12] that all zeros of f",,, in c* are real and ~ O.
Moreover they are simple and k + 1 in number if k < K ~ k + 1, kENo.
Other contributions to this particular question are contained in, e.g.,
[1-3,5,9-11,18-21]. Hence we may assume the zeros Z",.(A) to be
numbered according to

Among other asymptotic formulae in [3] we proved

(4 )

(
2v + In)z" .(0) = -exp -n cotan ---2 + lD(c"),. K+ 1

K --+ 00 (5)

except for "small" and "large" v where 0 < c < 1. Moreover this also holds
for K E C, K + 1= (Ko + 1)(1 + ir), Ko --+ 00, r E IR fixed (compare also [18]
for the special case KE N, 2=0). In [16,17] it was proved and indicated
that the convergence of interpolating cardinal Lagrange spline series with
grid 2 + lL, 2 E [0, !], and degree mEN is determined by its radius of
convergence

(6)

where

denotes the so-called main root of Pm, ;,' Using and modifying the results in
[18], recently Reimer [17] obtained asymptotic formulae for (2r(!) and
'2r+ 1(0) as r --+ 00, giving in turn asymptotic estimates for Rm(2).

It, is the main purpose of this paper to improve and to extend (5) by
explicit inequalities for z", .(2), that is, specifying the lD-term for K ~ 1
(Theorem 1). As an important consequence we get lower and upper
estimates for the main root of the Euler-Frobenius polynomial and the
radius of convergence of the cardinal Lagrange spline series, when m ~ 4
(Theorem 3). As in [3] the proofs essentially are based on the so-called
Linde1of-Wirtinger expansion off".;, giving a representation of the analytic
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extension onto C* (Section 2). However, now the error estimates are made
explicit.

2. BOUNDS FOR THE ZEROS

First modifying Lemma 1(iii) in [3] we derive the basic approximation
formula for fK.). on the negative real axis. Applying residue calculus
[6,7,22] or Poisson's sum formula (compare also [9; 8, p. 34]) to (I) we
obtain the Lindelof-Wirtinger expansion

T(K+ 1) if) e21timA

fK A(Z)= ZA m=~if) (2nim+log(llz)t+ l'
K>O (8)

giving the unique analytic extension onto C*. Here log liz is the principal
branch in C* meaning log liz is real for real positive z. Further, according
to this choice we define (u + iv t + 1 = exp( (K + I) log(u + iv)), where

log(u + iv) =! log(u2 + v2)+ i arg(u + iv)

with

n + arctan(vlu),

n12,
arg(u+iv)= arctan(vlu),

-nI2,
- n + arctan(vlu)

u<O, v~O
u=O, v>O

u>O
u=O, v <0
u<O, v~O

and -nI2<arctanx<nI2 for xEIR (see [3]). Putting Z= -r, r>O we
write

r(K+l) w e(2m+l j 1tO.

fd(-r)= rA m=~oo((2m+l)ni+log(llr)t+l

r(K + 1) e1t')'
rA(log(l/r)+int+ 1 {HK.;.(r)+RK(r)} (9)

with

H .(r)'=I+(108(llr)+in)K+l e- 21tO.
K, /.' log( llr) - in

(10)
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RAr) := (log(l/r) + int+ 1

00 { e21timA.

x m~1 (log(l/r)+(2m+l)ni)"+'

e - 21ti(m + I) A. }

+ (log(l/r) - (2m + 1) ni)"+ 1 • (11)

Now the approximation of f",;, by H ". A is made precise by the following

LEMMA. Suppose that 15 > 0, AE [0,1), K ~ 1. Then, for Ilog rl ~ 1/15, we
have

where

For real x by [x] we denote the largest integer not exceeding x.

Proof We use the proof of Lemma l(iii) in [3]. Since these estimations
for the series in (11) are carried out term by term in absolute value, the
independence of A and in particular the inequality following formula (31)'
in [3, p. 281] can be used. Now (13) follows immediately.

Remark. For 15 > 1/)7 n we have

(
1+(nb)2)("+')/2 (1)("+1)/2

d(b,K)~8 1+ (3nb)2 ~8 '2 . (13')

Next, we compare the zeros z". v( A) of fK,). (see (4)) with those of H K,). in

THEOREM 1. Suppose that K ~ 1, 15 > 0, and d(b, K) ~ 1. Then

( (
2(V+A)+ln))

Z",v(A)= -exp -ncotan K+ 1 2 +r,,(b), (14)
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2n
2

lib ( 1)
IrA<5)I~K+1e 1+~

{[ 1 2J} {I + (n<5)2 }(K+ 1)/2
X 2n<5 J1 +(3n<5) +1 x 1 + (3n<5)2 (15 )

and v E 1(<5, K) with

[
1 1 K+1 1

1(<5, K):= -A- 2+ 2d(<5, K)+-n-arccotan n<5' (K+ 1)

(
1 1) 1 1 Jx 1- - arccotan - - A- - - - d( <5, K)
n n<5 2 2

(0 < arccotan x < n for x E IR).

Remark.

(16 )

(17)

[

K + 1 1
J(<5, K):= -)'+-n-arccotan n<5' (K+ 1)

x ( 1- ~ arccotan :<5) - A-IJC I( <5, K). (16')

Proof of Theorem 1. We use the lemma above and follow the proof of
Theorem 1 in [3]. In view of (9) we put

ZK, v(A) = -exp( -n cotan x K,v(A)),

2(v + A) + 1 n
XKv(A) := 1 2 - eKV ', K+

where eKV E IR and vE N have to be chosen suitably. The lemma requires

nlcotan XK.(A)I ~ 1/<5

and for these v= v( <5, K) we obtain

and (18 )

1. .(z (A))=2r(K+1)sin K+l xK,v(A)
K, -. K.V IZK. v(A)!A. nK+ I

x (( -1)v sin( (K + 1) eK.) + ~RK( IZK. v(A)I)).

Since sin(nd(J, K)/2) ~ d(<5, K) > !RK (lzK, v(A)I), fK, A. changes sign exactly
once in the interval
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( - exp ( - n cotan (2(K: 1) (2(v + A) + 1+d(b, K)))).

-exp ( -n cotan (2(K: I) (2(v + A) + 1- d(b, K))))),
which gives It"vl ~ (n/2(K + 1)) d(b, K). Now a straightforward computation
yields that vEI(b, K) satisfies (18). Finally, we apply the mean value
theorem to obtain (It~vl ~ It"vl)

n
x---------

• 2 (2(v + A) + In ,)
sm K+ I "2- t "v

n
2

lib ( 1)
~2(K+1)e d(b,K) 1+(nb)2 '

which implies (14) and (15).

Next, we turn to monotonicity properties of the zeros. The monotonicity
of z" v(A) with respect to A was mentioned in [4, p. 220; 15] when
K=m'EN. The monotonicity of z",v(O) with respect to K was proved by
Wirsing [21]. For the sake of completeness we treat the general cases in

THEOREM 2. Assume the zeros Z ", v( A) off". Ie to be numbered according
to (4).

(i) If K and v are fixed, then z", v(A) is a strictly decreasing function of
AE [0, 1).

(ii) z",o(O)=Ofor all K>O. If A=O, vE{1,oo.,k} or if AE(O,l),
vE {O, ..., k }, then Z ", v(A) is a strictly increasing function of K > O.

(19)Z E 1(:*

Proof This essentially is based on ideas in [21] for proving part (ii) if
A=O. Therefore we restrict our considerations to some important steps.

In view of the implicit function theorem Z ", v(A) possesses partial
derivatives with respect to K and A. By (1), we have

I
,0 .

Z -,. zj, (z) - f, (z)OZ K, ). - K + I, ;. ,

o
- {' ·(z) = K{' I .(z)02 J ", ,. J" - ", , ZE 1(:* (20)
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and

A=O,

A>O,
(21)

From [4J we get (k<K~k+ 1)

z", k(A) < ", < z", I(A) < z'" o(A) ~ 0,

where Z",o(A)=O iff A=O, by (21), Further, (9) and (1) imply

(4)

(22)

Next, Rolle's theorem combined with (19), (4), and (22) gives

zK+ 1, v+ I(A) < z", y(A) < ZK+ I, v(A) < Z'" o(A)

v = 1, "', k, (23)

(24)v=O, "', k.

where both equalities hold iff A= 0, Since all z", v(A) are simple, by (21),
(19), (4), and (23), an immediate numbering yields

sign I~, jz", v(A)) = (-1 r,
sign 1,,-1, jz", v(A)) = (-1 r,

(i) From/",jz",v(A))=O and (20) we get

d
0= dA I", jz", v(A))

= KI"_I, ;.(z", vP·)) +I~, jz", .(A)) :A z", v(A),

which in turn gives (use (24))

v=O, ""k,

(ii) Putting

a
I~ ;Jz) :=-;- I" ,«z)

, uK'

we get for Izi < 1 that
00

I~, ;.(z) = L: (n + At log(n + A) zn
n=O

11 A-I dt
= 0 (/"",(z)- I",;,(zt) t ) log (lIt) (25)
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also holding in C* by analytic continuation. In order to show
sign«a/a")ZK.v(A))= 1 in view of (24) and

0= :" fK, ~(ZK, v(A)) = f:, ~(zK, v(A. )) +f~, Az K, v(A)) :" Z K, v(A)

it is sufficient to prove

sign f:, ;,(ZK, v(A)) = ( _l)V + I, v=O, ...,k, (26)

provided ZK, AA) < O. Writing ZK, v:= ZK, v(A.), by (25), we obtain

-1 fO (x/z)~ - I

f:,~(ZK.V)=-1-I fK,~(X) I t; )dx,
Z K, V ZK, , og X Z K, V

Proceeding in the very same manner as in [21], by splitting integral and
by partial integration (use also (19)) successively we end with

f:,;.(z K, v) = I~, ~I Jo (- l)j j! rK_-j~~~';- j-I fK - j, Ax)

(x/zK,v)~-l d
X (log(x/z

K
, v))i+ I x,

where ZK _ V _ I, _ I := O. In view of (21), (23), and the simplicity of the zeros,

sign fK _ j, Ax) = ( - 1r-j,

for ZK-j. v-j< x <ZK_j_l. v-j-I < ZK_j, v-j-I

and then (26) follows, which completes the proof.

3. ESTIMATIONS OF THE MAIN ROOT

In this section we apply the preceding results to the main root of the
Euler-Frobenius polynomials. Suppose throughout that" = m is a positive
integer (see (3), (6), and (7)),

THEOREM 3. With the above notations we have

where

{
r,

v(m) = 1
r+ ,

m = 2r, AE [0, 1) or m = 2r + 1, AE [!, 1)

m=2r+l,AE[0,!)
(27)
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Z2r, AO) = -1, Z2r+ I, r(1/2) = -1,

where

4n
2

(m - 21t)Irml::::; (2 )exp ncotan---
( 1) '2m-n m+12
m+ sm ---

m+ 12

(
, 2(m-21t))-(m+11I2

x 1+8sm --­
m+ 12

for m~4, and

for m~8,

I Z2r, r(},)I,
(iii) Rm(-1.) = 1,

IZ2r+ I, r+ 1(-1.)1,

Proof (i) From (9) we obtain

m=2r, 0<-1.::::;~

m = 2r, -1. = 0 or m = 2r + 1, -1. = ~

m = 2r + 1, 0 ::::; -1. < ~.

giving P2r,o( -1) =0 and P2r +I, 1/2( -1) =O. Now using the relation

Pm. ;,(z) = zmpm. 1_;,(I/z)

(see, e.g., [5,8, 11, 12,20]) implying the zeros to be "reciprocal," a simple
counting of zm, .(-1.), and the monotonicity with respect to -1. in
Theorem 2(i), complete part (i).

(ii) We apply Theorem 1 above. In order to get good bounds for
(m(-1.) we try to choose c5 = c5(m) as large as possible. In view of (16)' we put

c5(m) := sup{c5 > 01 v EJ(c5, m)}
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and it follows that (observe (27))

1 r- A
-tan-

2
1 n,

n r+
m =2r, 0~ A< 1

Choosing

b(m)=
1 r+l-A
- tan 2 2 n,
n r+

1 r - A
-tan--n,
n 2r+2

m=2r+1,!~A<1

m = 2r + 1, 0 ~ ), < !.

1 m-2n 1
J'(m) := - tan --1 -2 = - tan X m ,

n m+ n

say, in all cases clearly we have J'(m) < b(m) and

{[1(1 )1/2J}( 1 )<m+ 1)12

d(J'(m),m)=4 "2 sin2xm +8 +1 1+8sin2 x
m

for m~4.

This completes part (ii) (see (13) and (15)).

(iii) Use (6), part (i), and Theorem 2(i) and observe that

Remarks. (i) Since we estimated the remainder RK(r) term by term
with absolute values, the estimates for small K are not too sharp and the
approximation of the zeros is much better than that given by Theorem 3.
Compare [3, p. 291].

(ii) The zeros of H K, A are good starting points for calculating the
zeros of fK.;. with Newton iteration using, e.g., formula (8) in the case of
arbitrary K > O. Compare again [3, p. 291].
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